Evolution strategies based coefficient of TSK fuzzy forecasting engine
نویسندگان
چکیده
منابع مشابه
Identifying Rule-Based TSK Fuzzy Models
ABSTRACT: This article presents a rule-based fuzzy model for the identification of nonlinear MISO (multiple input, single output) systems. The presented method of fuzzy modeling consists of two parts: (1) structure modeling, i.e., the determination of the number of rules and input variables involved respectively, and (2) parameter optimization, i.e., the optimization of the location and form of...
متن کاملA Novel Dual Factor Fuzzy Time Series Forecasting based on new Fuzzy sets and Interval Definition by Evolution Strategies
This paper proposes a new dual factor time-invariant fuzzy time series method that is capable of forecasting stock market Price Index. The proposed approach uses a new fuzzy logic relationship definition. According to the utilized membership degrees used to define the fuzzy relationships, each datum may belong to two distinct intervals rather than only one interval. This assumption, which has n...
متن کاملTwo-Strategy reinforcement group cooperation based symbiotic evolution for TSK-type fuzzy controller design
This paper proposes a TSK-type fuzzy controller (TFC) with a two-strategy reinforcement group cooperation based symbiotic evolution (TSR-GCSE) for solving various control problems. The TSR-GCSE proposes the two-strategy reinforcement (TSR) signal designed to improve the performance of the traditional reinforcement signal designed. Moreover, the TSR-GCSE is different from the traditional symbiot...
متن کاملMulti groups cooperation based symbiotic evolution for TSK-type neuro-fuzzy systems design
In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbioti...
متن کاملLearning Accurate TSK Models Based on Local Fuzzy Prototyping
This work presents the use of local fuzzy prototypes as a first approximation to obtain accurate local semantics-based TakagiSugeno-Kang rules. A two-stage evolutionary algorithm considering the interaction between input and output variables has been developed. Firstly, it performs a local identification of prototypes, and then, a post-processing stage is considered to refine them. The proposal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advances in Intelligent Informatics
سال: 2021
ISSN: 2548-3161,2442-6571
DOI: 10.26555/ijain.v7i1.376